학술논문

Variation in the timing and duration of autumn leaf phenology among temperate deciduous trees, native shrubs and non-native shrubs
Document Type
Original Paper
Source
International Journal of Biometeorology. :1-11
Subject
Autumn phenology
Timing and duration
Temperate deciduous trees
Native shrubs
Non-native shrubs
Language
English
ISSN
0020-7128
1432-1254
Abstract
The timing and duration of autumn leaf phenology marks important transitions in temperate deciduous forests, such as, start of senescence, declining productivity and changing nutrient cycling. Phenological research on temperate deciduous forests typically focuses on upper canopy trees, overlooking the contribution of other plant functional groups like shrubs. Yet shrubs tend to remain green longer than trees, while non-native shrubs, in particular, tend to exhibit an extended growing season that confers a competitive advantage over native shrubs. We monitored leaf senescence and leaf fall (2017–2020) of trees and shrubs (native and non-native) in an urban woodland fragment in Wisconsin, USA. Our findings revealed that, the start of leaf senescence did not differ significantly between vegetation groups, but leaf fall started (DOY 273) two weeks later in shrubs. Non-native shrubs exhibited a considerably delayed start (DOY 262) and end of leaf senescence (DOY 300), with leaf-fall ending (DOY 315) nearly four weeks later than native shrubs and trees. Overall, the duration of the autumn phenological season was longer for non-native shrubs than either native shrubs or trees. Comparison of the timing of spring phenophases with the start and end of leaf senescence revealed that when spring phenology in trees starts later in the season senescence also starts later and ends earlier. The opposite pattern was observed in native shrubs. In conclusion, understanding the contributions of plant functional groups to overall forest phenology requires future investigation to ensure accurate predictions of future ecosystem productivity and help address discrepancies with remote sensing phenometrics.