학술논문

Characteristics of heavy metal accumulation and risk assessment in understory Panax notoginseng planting system
Document Type
Original Paper
Source
Environmental Geochemistry and Health: Official Journal of the Society for Environmental Geochemistry and Health. 45(12):9029-9040
Subject
Understory Panax notoginseng
Heavy metals
Chinese herb medicine
Pollution degree
Health risk
Ecological risk
Language
English
ISSN
0269-4042
1573-2983
Abstract
Yunnan Province is the main planting area of the precious Chinese herbal medicines (CHM) Panax notoginseng; however, it locates the geological area with high soil heavy metals in China. The frequent land replacement due to continuous cropping obstacles and excessive application of chemicals makes P. notoginseng prone to be contaminated by heavy metals under the farmland P. notoginseng (FPn) planting. To overcome farmland shortage, understory P. notoginseng (UPn) was developed as a new ecological planting model featured by no chemicals input. However, this newly developed planting system requires urgently the soil–plant heavy metal characteristics and risk assessment. This study aimed to evaluate the pollution status of eight heavy metals in the tillage layer (0–20 cm), subsoil layer (20–40 cm) and the plants of UPn in Lancang County, Yunnan Province. Pollution index (Pi) showed that the contamination degree of heavy metals in the tillage layer and subsoil layer was Cd > Pb > Ni > Cu > Zn > Cr > Hg > As and Pb > Cd > Cu > Ni > Cr > Hg > Zn > As, respectively. Potential ecological risk index (PERI) for the tillage layer and subsoil layer was slight and middle, respectively. The exceeding standard rate of Cd, As, Pb, Hg, Cu in the UPn roots was 5.33%, 5.33%, 13.33%, 26.67% and 1.33%, respectively, while only Cd and Hg in the UPn leaves exceeded the standard 10% and 14%, respectively. The enrichment abilities of Cd and Hg in the roots and leaves of UPn were the strongest, while that of Pb was the weakest. The Hazard index (HI) and target hazard quotient (THQ) of eight heavy metals in the roots and leaves of UPn were less than 1.Therefore, our results prove that Upn has no human health risk and provide a scientific basis for the safety evaluation and extension of UPn.