학술논문

Engineering motile aqueous phase-separated droplets via liposome stabilisation
Document Type
Original Paper
Source
Nature Communications. 12(1)
Subject
Language
English
ISSN
2041-1723
Abstract
There are increasing efforts to engineer functional compartments that mimic cellular behaviours from the bottom-up. One behaviour that is receiving particular attention is motility, due to its biotechnological potential and ubiquity in living systems. Many existing platforms make use of the Marangoni effect to achieve motion in water/oil (w/o) droplet systems. However, most of these systems are unsuitable for biological applications due to biocompatibility issues caused by the presence of oil phases. Here we report a biocompatible all aqueous (w/w) PEG/dextran Pickering-like emulsion system consisting of liposome-stabilised cell-sized droplets, where the stability can be easily tuned by adjusting liposome composition and concentration. We demonstrate that the compartments are capable of negative chemotaxis: these droplets can respond to a PEG/dextran polymer gradient through directional motion down to the gradient. The biocompatibility, motility and partitioning abilities of this droplet system offers new directions to pursue research in motion-related biological processes.
Bio-mimetic motion has been hard to achieve due to a lack of biocompatible conditions. Here, the authors report the creation of a liposome-stabilised aqueous PEG/dextran Pickering-like emulsion system with motion induced by the Marangoni effect and characterised by negative chemotaxis.