학술논문

Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth
Document Type
Original Paper
Source
Mineralogy and Petrology. 112(4):577-589
Subject
Pyrite framboids
Pyrite sunflower
R-package
Redox conditions
Computer simulation
Language
English
ISSN
0930-0708
1438-1168
Abstract
Framboids and sunflowers are the most ubiquitous shapes of sedimentary pyrite. Framboids are spherical aggregates of nanocrystals, while sunflowers are formed by overgrowth of framboids and represent intermediate stages in the transformation of framboids into euhedrae. The characterization of the size populations of these shapes provides critical information about the paleoredox conditions at time of formation and the subsequent changes in these conditions. This paper describes in detail an algorithm designed to model the growth and generate significant populations of both framboids and sunflowers, using functions of the statistical software R. The source code is provided as supplementary material to this paper. The algorithm uses several growth mechanisms based on dependence on or independence of the number of nanocrystals for framboids and the external diameter for sunflowers. Variability in the generated size populations depends on several parameters of the algorithm, such as the diameter of the nanocrystals, the initial diameter of the framboids and the maximum value of the random numbers. The resulting populations of framboids and sunflowers can be compared with data obtained from analysis of real samples in order to understand and model the genetic paleo-processes.