학술논문

Deposition and Localization of Polishing Powder Wear Nanoparticles on the Processed Surface of Polymeric Optical Materials
Document Type
Original Paper
Source
Journal of Superhard Materials. 46(1):55-64
Subject
polishing
polymeric materials
nanoparticle scattering
deposit fragments
Language
English
ISSN
1063-4576
1934-9408
Abstract
The investigation revealed patterns in the formation and localization of deposits of polishing powder wear nanoparticles on the processed surface during the polishing of polymeric materials using disperse systems of micro- and nanopowders. The total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles increases nonlinearly with the movement of particles, extremally depends on the product of spectral separation for dielectric constant separation between the processed material, polishing powder, and the disperse system, and exponentially increases with the resonator detuning. When polystyrene is polished using cerium dioxide micropowder, deposition on the processed surface is most likely to occur, with the maximum value of the total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles being at 49.7 Mb. Experimental data indicate that the localization of deposits with polishing powder wear nanoparticles on the processed surface occurs according to the distribution function of the total scattering cross section of polishing powder wear nanoparticles on sludge nanoparticles across circular zones, which aligns well with experimental results, within 12.5%. The experimentally determined average thickness of the deposit fragments of polishing powder wear nanoparticles, forming complete or partial coverage of the component surface, ranges from 1.1 to 1.5 µm.