학술논문

Quantitative Pupillometry for Intracranial Pressure (ICP) Monitoring in Traumatic Brain Injury: A Scoping Review
Document Type
Review Paper
Source
Neurocritical Care. :1-17
Subject
Intracranial pressure (ICP)
Monitoring
Traumatic brain injury (TBI)
Intracranial hypertension
Noninvasive monitoring
Invasive monitoring
Quantitative pupillometry
Pupillometer
Language
English
ISSN
1541-6933
1556-0961
Abstract
The neurological examination has remained key for the detection of worsening in neurocritical care patients, particularly after traumatic brain injury (TBI). New-onset, unreactive anisocoria frequently occurs in such situations, triggering aggressive diagnostic and therapeutic measures to address life-threatening elevations in intracranial pressure (ICP). As such, the field needs objective, unbiased, portable, and reliable methods for quickly assessing such pupillary changes. In this area, quantitative pupillometry (QP) proves promising, leveraging the analysis of different pupillary variables to indirectly estimate ICP. Thus, this scoping review seeks to describe the existing evidence for the use of QP in estimating ICP in adult patients with TBI as compared with invasive methods, which are considered the standard practice. This review was conducted in accordance with the Joanna Briggs Institute methodology for scoping reviews, with a main search of PubMed and EMBASE. The search was limited to studies of adult patients with TBI published in any language between 2012 and 2022. Eight studies were included for analysis, with the vast majority being prospective studies conducted in high-income countries. Among QP variables, serial rather than isolated measurements of neurologic pupillary index, constriction velocity, and maximal constriction velocity demonstrated the best correlation with invasive ICP measurement values, particularly in predicting refractory intracranial hypertension. Neurologic pupillary index and ICP also showed an inverse relationship when trends were simultaneously compared. As such, QP, when used repetitively, seems to be a promising tool for noninvasive ICP monitoring in patients with TBI, especially when used in conjunction with other clinical and neuromonitoring data.