학술논문

Synthesis of Polyhedral Zirconia Nanoparticles for The Photocatalytic Degradation of Anionic Congo Red Dye Under Visible Light Irradiation
Document Type
Original Paper
Source
Topics in Catalysis. 67(9-12):594-605
Subject
Zirconia nanoparticles
Congo Red dye
Photocatalytic Degradation
Photocatalysis
Language
English
ISSN
1022-5528
1572-9028
Abstract
In this study, mixed phase (tetragonal and monoclinic) Zirconia nanoparticles (ZrO2 NPs) namely, ZS3, ZS7 and ZS10 were synthesized via hydrothermal method at different pH values of (3, 7, 10) respectively. A combination of Powder X-ray diffraction (PXRD), High Resolution Transmission Electron Microscopy (HRTEM), and Selected Area Electron Diffraction (SAED) characterization techniques confirmed the formation of mixed phase ZrO2 nanoparticles. The photocatalytic behavior of synthesized ZrO2 NPs was examined for the degradation of anionic Congo Red (CR) Dye under visible light irradiation. A systematic study of the efficiency of the prepared ZS3, ZS7 and ZS10 nanoparticles was compared and it was found that ZS7 outperformed the ZS3 and ZS10 materials, having removal efficiency of up to 98.9% with 0.1 g of the prepared ZS7 nanoparticles for 75 ppm of Congo Red (CR) dye. Furthermore, the surface area analysis revealed that among the prepared materials, ZS7 exhibited the highest surface area, thereby corroborating the finding of its superior catalytic efficiency. Under the optimized experimental conditions, the degradation of dye followed first-order kinetics. ZS7 showed the highest removal efficiency in just 60 min of contact time for all the CR dye concentrations ranging from 50 to 100 ppm, making it a superior catalyst for the efficient removal of the targeted Congo Red dye.