학술논문

Design of inertial fusion implosions reaching the burning plasma regime
Document Type
Original Paper
Author
Kritcher, A. L.Young, C. V.Robey, H. F.Weber, C. R.Zylstra, A. B.Hurricane, O. A.Callahan, D. A.Ralph, J. E.Ross, J. S.Baker, K. L.Casey, D. T.Clark, D. S.Döppner, T.Divol, L.Hohenberger, M.Hopkins, L. BerzakLe Pape, S.Meezan, N. B.Pak, A.Patel, P. K.Tommasini, R.Ali, S. J.Amendt, P. A.Atherton, L. J.Bachmann, B.Bailey, D.Benedetti, L. R.Betti, R.Bhandarkar, S. D.Biener, J.Bionta, R. M.Birge, N. W.Bond, E. J.Bradley, D. K.Braun, T.Briggs, T. M.Bruhn, M. W.Celliers, P. M.Chang, B.Chapman, T.Chen, H.Choate, C.Christopherson, A. R.Crippen, J. W.Dewald, E. L.Dittrich, T. R.Edwards, M. J.Farmer, W. A.Field, J. E.Fittinghoff, D.Frenje, J. A.Gaffney, J. A.Johnson, M. GatuGlenzer, S. H.Grim, G. P.Haan, S.Hahn, K. D.Hall, G. N.Hammel, B. A.Harte, J.Hartouni, E.Heebner, J. E.Hernandez, V. J.Herrmann, H.Herrmann, M. C.Hinkel, D. E.Ho, D. D.Holder, J. P.Hsing, W. W.Huang, H.Humbird, K. D.Izumi, N.Jarrott, L. C.Jeet, J.Jones, O.Kerbel, G. D.Kerr, S. M.Khan, S. F.Kilkenny, J.Kim, Y.Geppert-Kleinrath, H.Geppert-Kleinrath, V.Kong, C.Koning, J. M.Kruse, M. K. G.Kroll, J. J.Kustowski, B.Landen, O. L.Langer, S.Larson, D.Lemos, N. C.Lindl, J. D.Ma, T.MacDonald, M. J.MacGowan, B. J.Mackinnon, A. J.MacLaren, S. A.MacPhee, A. G.Marinak, M. M.Mariscal, D. A.Marley, E. V.Masse, L.Meaney, K.Michel, P. A.Millot, M.Milovich, J. L.Moody, J. D.Moore, A. S.Morton, J. W.Murphy, T.Newman, K.Di Nicola, J.-M. G.Nikroo, A.Nora, R.Patel, M. V.Pelz, L. J.Peterson, J. L.Ping, Y.Pollock, B. B.Ratledge, M.Rice, N. G.Rinderknecht, H.Rosen, M.Rubery, M. S.Salmonson, J. D.Sater, J.Schiaffino, S.Schlossberg, D. J.Schneider, M. B.Schroeder, C. R.Scott, H. A.Sepke, S. M.Sequoia, K.Sherlock, M. W.Shin, S.Smalyuk, V. A.Spears, B. K.Springer, P. T.Stadermann, M.Stoupin, S.Strozzi, D. J.Suter, L. J.Thomas, C. A.Town, R. P. J.Trosseille, C.Tubman, E. R.Volegov, P. L.Widmann, K.Wild, C.Wilde, C. H.Van Wonterghem, B. M.Woods, D. T.Woodworth, B. N.Yamaguchi, M.Yang, S. T.Zimmerman, G. B.
Source
Nature Physics. 18(3):251-258
Subject
Language
English
ISSN
1745-2473
1745-2481
Abstract
In a burning plasma state1–7, alpha particles from deuterium–tritium fusion reactions redeposit their energy and are the dominant source of heating. This state has recently been achieved at the US National Ignition Facility8 using indirect-drive inertial-confinement fusion. Our experiments use a laser-generated radiation-filled cavity (a hohlraum) to spherically implode capsules containing deuterium and tritium fuel in a central hot spot where the fusion reactions occur. We have developed more efficient hohlraums to implode larger fusion targets compared with previous experiments9,10. This delivered more energy to the hot spot, whereas other parameters were optimized to maintain the high pressures required for inertial-confinement fusion. We also report improvements in implosion symmetry control by moving energy between the laser beams11–16 and designing advanced hohlraum geometry17 that allows for these larger implosions to be driven at the present laser energy and power capability of the National Ignition Facility. These design changes resulted in fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy18,19. Radiation hydrodynamics simulations20,21 show energy deposition by alpha particles as the dominant term in the hot-spot energy balance, indicative of a burning plasma state.
In burning plasma, alpha particles from fusion reactions are the dominant source of heating. The design choices that resulted in reaching this state in experiments at the National Ignition Facility are reported.