학술논문

Assessing the prognostic value of tumor-infiltrating CD57+ cells in advanced stage head and neck cancer using QuPath digital image analysis
Document Type
Original Paper
Source
Virchows Archiv: European Journal of Pathology. 481(2):223-231
Subject
Head and neck squamous cell carcinoma (HNSCC)
Tumor-infiltrating lymphocytes (TILs)
NK cells
Prognostic biomarkers
Digital pathology
QuPath
Language
English
ISSN
0945-6317
1432-2307
Abstract
This study aimed to assess the prognostic value of intratumoral CD57+ cells in head and neck squamous cell carcinoma (HNSCC) and to examine the reproducibility of these analyses using QuPath. Pretreatment biopsies of 159 patients with HPV-negative, stage III/IV HNSCC treated with chemoradiotherapy were immunohistochemically stained for CD57. The number of CD57+ cells per mm2 tumor epithelium was quantified by two independent observers and by QuPath, software for digital pathology image analysis. Concordance between the observers and QuPath was assessed by intraclass correlation coefficients (ICC). The correlation between CD57 and clinicopathological characteristics was assessed; associations with clinical outcome were estimated using Cox proportional hazard analysis and visualized using Kaplan-Meier curves. The patient cohort had a 3-year OS of 65.8% with a median follow-up of 54 months. The number of CD57+ cells/mm2 tumor tissue did not correlate to OS, DFS, or LRC. N stage predicted prognosis (OS: HR 0.43, p = 0.008; DFS: HR 0.41, p = 0.003; LRC: HR 0.24, p = 0.007), as did WHO performance state (OS: HR 0.48, p = 0.028; LRC: 0.33, p = 0.039). Quantification by QuPath showed moderate to good concordance with two human observers (ICCs 0.836, CI 0.805–0.863, and 0.741, CI 0.692–0.783, respectively). In conclusion, the presence of CD57+ TILs did not correlate to prognosis in advanced stage, HPV-negative HNSCC patients treated with chemoradiotherapy. Substantial concordance between human observers and QuPath was found, confirming a promising future role for digital, algorithm driven image analysis.