학술논문

Modified signal-to-noise ratio in the liver using the background-to-lung activity ratio to assess image quality of whole-body 18F-fluorodeoxyglucose positron emission tomography
Document Type
Original Paper
Source
Radiological Physics and Technology. 16(1):94-101
Subject
Modified SNR liver
Background-to-lung activity ratio
SNR liver
NEC density
Image quality
PET
Language
English
ISSN
1865-0333
1865-0341
Abstract
The signal-to-noise ratio in the liver (SNR liver) is commonly used to assess the quality of positron emission tomography (PET) images; however, it is weakly correlated with visual assessments. Conversely, the noise equivalent count (NEC) density showed a strong correlation with visual assessment but did not consider the effects of image reconstruction conditions. Therefore, we propose a new indicator, the modified SNR liver, and plan to verify its usefulness by comparing it with conventional indicators. We retrospectively analyzed 103 patients who underwent whole-body PET/computed tomography (CT). Approximately 60 min after the intravenous injection of 18F-fluorodeoxyglucose (FDG), the participants were scanned for 2 min/bed. The SNR liver and NEC density were calculated according to the Japanese guidelines for oncology FDG-PET/CT. The modified SNR live was calculated by multiplying the background-to-lung activity ratio by the SNR liver. Patients were classified into groups based on body mass index (BMI) and visual scores. Subsequently, the relationships between these physical indicators, BMI, and visual scores were evaluated. Although the relationship between the modified SNR liver and BMI was inferior to that of NEC density and BMI, the modified SNR liver distinguished the BMI groups more clearly than the conventional SNR liver. Additionally, the modified SNR liver distinguished low visual scores from high scores more accurately than the conventional SNR liver and NEC density. Whether the modified SNR liver is more suitable than the NEC density remains equivocal; however, the modified SNR liver may be superior to the conventional SNR liver for image-quality assessment.