학술논문

Functional expression of the ATP-gated P2X7 receptor in human iPSC-derived astrocytes
Document Type
Original Paper
Source
Purinergic Signalling: The Official Journal of the International Purine Club. 20(3):303-309
Subject
P2X7 receptor
hiPSC-derived astrocytes
ATP and BzATP-evoked Ca2+ fluctuations
Language
English
ISSN
1573-9538
1573-9546
Abstract
Activation of the ATP-gated P2X7 receptor (P2X7R), implicated in numerous diseases of the brain, can trigger diverse responses such as the release of pro-inflammatory cytokines, modulation of neurotransmission, cell proliferation or cell death. However, despite the known species-specific differences in its pharmacological properties, to date, most functional studies on P2X7R responses have been analyzed in cells from rodents or immortalised cell lines. To assess the endogenous and functional expression of P2X7Rs in human astrocytes, we differentiated human-induced pluripotent stem cells (hiPSCs) into GFAP and S100 β-expressing astrocytes. Immunostaining revealed prominent punctate P2X7R staining. P2X7R protein expression was also confirmed by Western blot. Importantly, stimulation with the potent non-selective P2X7R agonist 2′,3′-O-(benzoyl-4-benzoyl)-adenosine 5′- triphosphate (BzATP) or endogenous agonist ATP induced robust calcium rises in hiPSC-derived astrocytes which were blocked by the selective P2X7R antagonists AFC-5128 or JNJ-47965567. Our findings provide evidence for the functional expression of P2X7Rs in hiPSC-derived astrocytes and support their in vitro utility in investigating the role of the P2X7R and drug screening in disorders of the central nervous system (CNS).