학술논문

Miniaturized fiber-optic ultrasound probes for endoscopic tissue analysis by micro-opto-mechanical technology
Document Type
Original Paper
Source
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology. June 2014 16(3):415-426
Subject
Lasers
MOMS
Opto-acoustic
Ultrasound generators
Acousto-optical ultrasound detectors
Tissue analysis
Endoscopic probes
Language
English
ISSN
1387-2176
1572-8781
Abstract
A new Micro-Opto-Mechanical System (MOMS) technology for the fabrication of optoacoustic probes on optical fiber is presented. The technology is based on the thermoelastic emission of ultrasonic waves from patterned carbon films for generation and on extrinsic polymer Fabry-Perot acousto-optical transducers for detection, both fabricated on miniaturized single-crystal silicon frames used to mount the ultrasonic transducers on the tip of an optical fiber. Thanks to the fabrication process adopted, high miniaturization levels are reached in the MOMS devices, demonstrating fiber-optic emitters and detectors with minimum diameter around 350 and 250 μm respectively. A thorough functional testing of the ultrasound emitters mounted on 200 and 600 μm diameter optical fibers is presented, in which the fiber-optic emitter with a diameter of 200 μm shows generated acoustic pressures with peak-to-peak value up to 2.8 MPa with rather flat emission spectra extended beyond 150 MHz. The possibility to use the presented optoacoustic sources in conjunction with the fiber-optic acousto-optical detectors within a minimally invasive probe is also demonstrated by successfully measuring the ultrasonic echo reflected from a rigid surface immersed in water with various concentration of scatterers. The resulting spectra highlight the possibility to discriminate the effects due to frequency selective attenuation in a very wide range of frequencies within a biological medium using the presented fiber-optic probes.