학술논문

Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut
Document Type
Original Paper
Source
Nature Microbiology. 8(3):424-440
Subject
Language
English
ISSN
2058-5276
Abstract
The molecular bases of how host genetic variation impacts the gut microbiome remain largely unknown. Here we used a genetically diverse mouse population and applied systems genetics strategies to identify interactions between host and microbe phenotypes including microbial functions, using faecal metagenomics, small intestinal transcripts and caecal lipids that influence microbe–host dynamics. Quantitative trait locus (QTL) mapping identified murine genomic regions associated with variations in bacterial taxa; bacterial functions including motility, sporulation and lipopolysaccharide production and levels of bacterial- and host-derived lipids. We found overlapping QTL for the abundance of Akkermansia muciniphila and caecal levels of ornithine lipids. Follow-up in vitro and in vivo studies revealed that A. muciniphila is a major source of these lipids in the gut, provided evidence that ornithine lipids have immunomodulatory effects and identified intestinal transcripts co-regulated with these traits including Atf3, which encodes for a transcription factor that plays vital roles in modulating metabolism and immunity. Collectively, these results suggest that ornithine lipids are potentially important for A. muciniphila–host interactions and support the role of host genetics as a determinant of responses to gut microbes.
Systems genetics reveals interactions between host and microbial phenotypes in the murine gut, including a role for Akkermansia muciniphila in the production of immunomodulatory ornithine lipids.