학술논문

Calibrating the pTRM and charcoal reflectance (Ro%) methods to determine the emplacement temperature of ignimbrites: Fogo A sequence, São Miguel, Azores, Portugal, as a case study
Document Type
Original Paper
Source
Bulletin of Volcanology: Official Journal of the International Association of Volcanology and Chemistry of the Earth`s Interior (IAVCEI). March 2015 77(3):1-19
Subject
Ignimbrite emplacement temperature
Thermal remanent magnetization
Charcoal reflectance
Fogo A eruption sequence
Language
English
ISSN
0258-8900
1432-0819
Abstract
The emplacement temperatures of three ignimbrites belonging to the 4.6-ka Fogo A plinian eruption sequence in São Miguel Island (Azores, Portugal) were determined using partial thermal remanent magnetization (pTRM) of lithic clasts and reflectance (Ro%) of charcoal fragments embedded within the deposits and collected at the same localities close to each other. The Fogo A sequence is characterised by a complex stratigraphy consisting of a thick plinian deposit interbedded with two intraplinian ignimbrites (here named “pink” and “black” intraplinian ignimbrite, respectively) and capped by a final ignimbrite (here named “dark brown” ignimbrite). A total of 140 oriented lithic clasts from the three ignimbrites were collected from 15 localities distributed along the northern and southern flanks of the volcano. The pTRM analyses show different paleomagnetic behaviours, which correspond to different emplacement temperatures of the ignimbrites. The emplacement temperatures of the pink and black intraplinian ignimbrites inferred from pTRM analysis were respectively ≥400 and ≥600 °C; the temperatures of the dark brown ignimbrite are lower, estimated between 300 and 350 °C. Thermal estimations of three key sites were compared with the results of the analysis of reflectance (Ro%) measured on eight specimens derived from charcoal fragments collected from the pink intraplinian ignimbrite and the dark brown ignimbrite. Results indicate Ro% values between 1.61 and 1.37 for the pink intraplinian ignimbrite, whereas fragments collected from the dark brown ignimbrite show Ro% values between 0.85 and 0.50. No charred wood was found in the black intraplinian ignimbrite. Ro% values indicate that charcoal fragments in the pink intraplinian ignimbrite reached temperatures of 380–460 °C, whereas the Ro% values of the dark brown ignimbrite indicate slightly lower temperatures of 330–350 °C. TRM and Ro% results are comparable and validate the use of both methods. Greatest accuracy in the determination of emplacement temperatures of ignimbrites is achieved when both methods can be applied at the same locations.