학술논문

Effects of short-term starvation on ghrelin, GH-IGF system, and IGF-binding proteins in Atlantic salmon
Document Type
Original Paper
Source
Fish Physiology and Biochemistry. March 2011 37(1):217-232
Subject
Atlantic salmon
Ghrelin
GH-IGF system
IGF-binding proteins
Food deprivation
Language
English
ISSN
0920-1742
1573-5168
Abstract
The effects of short-time fasting on appetite, growth, and nutrient were studied in Atlantic salmon (Salmo salar) smolts. Feed deprivation did change the energy metabolism with reduced plasma protein and muscle indispensible amino acid levels. Plasma levels of ghrelin were significantly higher in starved salmon compared with fed fish after 2 days, but no differences in circulating ghrelin were found between treatments after 14 days. Two mRNA sequences for ghrelin-1 and ghrelin-2, 430 and 533 bp long, respectively, were detected. In addition, the growth hormone secretagogues-receptor like receptor (GHSR-LR) 1a and 1b were identified. Ghrelin-1 but not ghrelin-2 mRNA levels were affected by starvation in the stomach. Lower ghrelin-1 mRNA levels were detected at day 2 in starved fish compared with fed fish. The mRNA levels of GHSR-LR1a were not affected by starvation. Fasting reduced the phenotypic growth and the transcription of insulin-like growth factor (IGF)-II together with IGF-IIR, but IGF-I mRNA were not regulated in fasted salmon after 14 days. Three IGF-binding proteins (IGFBP) at 23, 32, and 43 kDa were found in salmon, and circulating 23 kDa was significantly increased after 14 days of starvation compared with fed fish, indicating increased catabolism. The levels of IGFBP-1 mRNA were significantly higher in fed and starved fish after 14 days compared to those at the start of the experiment, but no significant difference was observed between the treatments. In conclusion, we have shown that circulating ghrelin and ghrelin-1 mRNA is related to changes in energy metabolism in Atlantic salmon.