학술논문

Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada
Document Type
Original Paper
Source
Mineralium Deposita: International Journal for Geology, Mineralogy and Geochemistry of Mineral Deposits. April 2016 51(4):509-532
Subject
Lac des Iles Pd deposits
Sulfide-rich pods
Platinum-group elements
Dilation zones
MSS fractionation
Language
English
ISSN
0026-4598
1432-1866
Abstract
The Lac des Iles Pd deposits are known for their Pd-rich sulfide-poor mineralization. However, previously undocumented sulfide-rich pods also occur within the intrusion that hosts the deposits. Given the complex magmatic and hydrothermal history of the mineralization at Lac des Iles, the sulfide-rich pods could have crystallized from magmatic sulfide liquids or precipitated from hydrothermal fluids. Sulfide-rich pods occur throughout the stratigraphy, in all rock types, and along comagmatic shear zones, and contain net-textured to massive sulfides. They can be divided into four main groups based on the variation in mineral assemblages: (1) pyrrhotite–pentlandite ± pyrite–chalcopyrite–magnetite–ilmenite; (2) chalcopyrite ± pyrrhotite–pentlandite–pyrite–magnetite–ilmenite; (3) pyrite ± pentlandite–chalcopyrite–pyrrhotite–magnetite–ilmenite; and (4) magnetite ± ilmenite–pyrrhotite–pentlandite–pyrite–chalcopyrite. Whole rock metal contents and S isotopic compositions do not change with the amount of pyrite present, except for slight enrichments in As and Bi. The presence of an essentially magmatic sulfide mineral assemblage (pyrrhotite–pentlandite ± chalcopyrite) with pentlandite exsolution flames in pyrrhotite in some pods suggests that the pods crystallized from magmatic sulfide liquids. The very low Cu contents of the pods suggests that they are mainly cumulates of monosulfide solid solution (MSS). We propose a model whereby sulfide liquids were concentrated into dilation zones prior to crystallizing cumulus MSS. Intermediate solid solution crystallized from the fractionated liquids at the edges of some pods leaving residual liquids enriched in Pt, Pd, Au, As, Bi, Sb, and Te. These residual liquids are no longer associated with the pods. During subsequent alteration, pyrite replaced MSS/pyrrhotite, but this did not affect the platinum-group element contents of the pods.