학술논문

Synthesis by Electrolysis of Iron-Based Fluoride as Cathode Materials for Lithium Ion Batteries
Document Type
Original Paper
Source
Electronic Materials Letters. 20(3):306-316
Subject
Lithium-ion battery
Iron-based fluoride
Electrolytic synthesis
Anion substitution
Language
English
ISSN
1738-8090
2093-6788
Abstract
The hydrated iron fluoride (Fe3F8·2H2O) with mixed valence cations is successfully synthesized through a rapid electrolytic synthesis route for the first time using low-concentration HF solution as fluorine source and cheap carbon steel as iron source. By controlling the value of current density, submicron structured hydrated iron fluoride with different grain sizes is obtained. The thermal behavior of Fe3F8·2H2O under air atmosphere is studied. The product cooling to room temperature after heat treatment is FeF2.2(OH)0.8·0.33H2O, which is determined by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared spectrometer (FT-IR), and thermogravimetry/differential scanning calorimetry (TG/DSC). The evaluation of the electrochemical performance of FeF2.2(OH)0.8·0.33H2O as a cathode for lithium batteries shows that it has an initial discharge capacity as high as 580 mAh g−1 in a wide voltage range of 1.0–4.5 V at a current density of 20 mA g−1, but the cycle performance is not very satisfactory, only 170 mAh g−1 after 50 cycles.Graphical abstract: