학술논문

Bivariate Assessment of Hydrological Drought of a Semi-Arid Basin and Investigation of Drought Propagation Using a Novel Cross Wavelet Transform Based Technique
Document Type
Original Paper
Source
Water Resources Management: An International Journal - Published for the European Water Resources Association (EWRA). 38(8):2977-3005
Subject
Hydrological drought
Modified SSI
Copula
Most-likely event
Drought propagation
CrosS Wavelet Transform
Language
English
ISSN
0920-4741
1573-1650
Abstract
The advent of climate change has induced frequent occurrence of droughts in the past few decades. Identification of hydrological droughts require computation of drought indices by probabilistic standardization procedures. The existing hydrological drought indices could not answer the zero monthly streamflow condition for the ephemeral streams. This issue was resolved by developing a modified Standardized Streamflow Index to characterize the hydrological drought of Upper Kangsabati River Basin, West Bengal, India. 45 hydrological droughts were extracted for the basin and the most severe drought occurred in the year 2015–2016. The basin experienced the most severe drought of 10.67 severity and longest drought duration of 13 months. A bivariate analysis of drought characteristics was carried out using copula technique to determine different design drought events. The bivariate distribution which showed the basin experienced most severe drought of 16 years and longest duration drought of 15 years ‘OR’ return period. Propagation time of the drought hazard from the meteorological to the hydrological drought is extensively studied in this research using both correlation and Cross Wavelet Transform (XWT) methods. XWT was mostly used for qualitative comparison of hydrological and meteorological signal in drought propagation studies in the past. In this research, a novel quantitative approach of using XWT and the phase angles obtained between the hydrological and meteorological signals is proposed to determine the drought propagation times. It was concluded that the basin had in general a drought propagation time of 2 months. However, there were seasonal variability in the drought propagation times showing prompt response in the summer season which increased to 2 months for monsoons and stretching far to 5 months for the late winter.