학술논문

Genomic epidemiology reveals multidrug resistant plasmid spread between Vibrio cholerae lineages in Yemen
Document Type
Original Paper
Source
Nature Microbiology. 8(10):1787-1798
Subject
Language
English
ISSN
2058-5276
Abstract
Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.
Genomic epidemiology of Vibrio cholerae isolates recovered between 2016 and 2019 during the Yemen cholera outbreak reveals acquisition of multidrug resistance and patterns of plasmid transmission between endemic and epidemic lineages.