학술논문

Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using s=13TeV proton–proton collision data
Document Type
article
Source
European Physical Journal C. 81(11)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Astronomical sciences
Atomic
molecular and optical physics
Particle and high energy physics
Language
Abstract
A search for R-parity-violating supersymmetry in final states characterized by high jet multiplicity, at least one isolated light lepton and either zero or at least three b-tagged jets is presented. The search uses 139fb-1 of s=13TeV proton–proton collision data collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature gluino production, top-squark production, or electroweakino production. The dominant sources of background are estimated using a data-driven model, based on observables at medium jet multiplicity, to predict the b-tagged jet multiplicity distribution at the higher jet multiplicities used in the search. Machine-learning techniques are used to reach sensitivity to electroweakino production, extending the data-driven background estimation to the shape of the machine-learning discriminant. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted, reaching as high as 2.4 TeV in gluino mass, 1.35 TeV in top-squark mass, and 320 (365) GeV in higgsino (wino) mass.