학술논문

Metastatic State of Cancer Cells May Be Indicated by Adhesion Strength
Document Type
article
Source
Biophysical Journal. 112(4)
Subject
Biochemistry and Cell Biology
Biological Sciences
Cancer
Cell Adhesion
Cell Line
Tumor
Cell Movement
Focal Adhesions
Humans
Neoplasm Metastasis
Physical Sciences
Chemical Sciences
Biophysics
Biological sciences
Chemical sciences
Physical sciences
Language
Abstract
Cancer cells within a tumor are heterogeneous and only a small fraction are able to form secondary tumors. Universal biological markers that clearly identify potentially metastatic cells are limited, which complicates isolation and further study. However, using physical rather than biological characteristics, we have identified Mg2+- and Ca2+-mediated differences in adhesion strength between metastatic and nonmetastatic mammary epithelial cell lines, which occur over concentration ranges similar to those found in tumor stroma. Metastatic cells exhibit remarkable heterogeneity in their adhesion strength under stromal-like conditions, unlike their nonmetastatic counterparts, which exhibit Mg2+- and Ca2+-insensitive adhesion. This heterogeneity is the result of increased sensitivity to Mg2+- and Ca2+-mediated focal adhesion disassembly in metastatic cells, rather than changes in integrin expression or focal adhesion phosphorylation. Strongly adherent metastatic cells exhibit less migratory behavior, similar to nonmetastatic cell lines but contrary to the unselected metastatic cell population. Adhesion strength heterogeneity was observed across multiple cancer cell lines as well as isogenically, suggesting that adhesion strength may serve as a general marker of metastatic cells.