학술논문

Crystallization of proteins from crude bovine rod outer segments.
Document Type
article
Source
Subject
Creatine kinase-B type
Glyceraldehyde 3-phosphate dehydrogenase
Opsin
Phosphodiesterase 6
Photoreceptor
Protein crystallization
Rod outer segment proteins
Rods
Transducin
l-Lactate dehydrogenase
Animals
Cattle
Crystallization
Crystallography
X-Ray
Eye Proteins
Membrane Proteins
Models
Molecular
Protein Conformation
Rod Cell Outer Segment
Language
Abstract
Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012). As exemplified by RPE65 (Kiser, Golczak, Lodowski, Chance, & Palczewski, 2009), there also are cases of mammalian proteins crystallized from less purified samples. To test whether this phenomenon can be applied more broadly to the study of proteins from higher organisms, we investigated the protein crystallization profile of bovine rod outer segment (ROS) crude extracts. Interestingly, multiple protein crystals readily formed from such extracts, some of them diffracting to high resolution that allowed structural determination. A total of seven proteins were crystallized, one of which was a membrane protein. Successful crystallization of proteins from heterogeneous ROS extracts demonstrates that many mammalian proteins also have an intrinsic propensity to crystallize from complex biological mixtures. By providing an alternative approach to heterologous expression to achieve crystallization, this strategy could be useful for proteins and complexes that are difficult to purify or obtain by recombinant techniques.