학술논문

All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field
Document Type
article
Source
The Astrophysical Journal. 871(1)
Subject
Particle and High Energy Physics
Astronomical Sciences
Physical Sciences
astroparticle physics
cosmic rays
ISM: magnetic fields
astro-ph.HE
Astronomical and Space Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Physical Chemistry (incl. Structural)
Astronomy & Astrophysics
Astronomical sciences
Particle and high energy physics
Space sciences
Language
Abstract
We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the High-Altitude Water Cherenkov and IceCube observatories in the northern and southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and present a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map, we determine the horizontal dipole components of the anisotropy δ 0h = 9.16 ×10-4 and δ 6h = 7.25 ×10-4 (±0.04 × 10-4). In addition, we infer the direction (229.°2 ± 3.°5 R.A., 11.°4 ± 3.°0 decl.) of the interstellar magnetic field from the boundary between large-scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large-scale anisotropy to be δN ∼ -3.97+1.0-2.0 × 10-4.