학술논문

From BEYONDPLANCK to COSMOGLOBE: Preliminary WMAP Q-band analysis
Document Type
article
Source
Subject
Space Sciences
Particle and High Energy Physics
Astronomical Sciences
Physical Sciences
Astronomical and Space Sciences
Astronomy & Astrophysics
Astronomical sciences
Particle and high energy physics
Space sciences
Language
Abstract
We present the first application of the COSMOGLOBE analysis framework by analyzing nine-year WMAP time-ordered observations that uses similar machinery to that of BEYONDPLANCK for the Planck Low Frequency Instrument (LFI). We analyzed only the Q-band (41 GHz) data and report on the low-level analysis process based on uncalibrated time-ordered data to calibrated maps. Most of the existing BEYONDPLANCK pipeline may be reused for WMAP analysis with minimal changes to the existing codebase. The main modification is the implementation of the same preconditioned biconjugate gradient mapmaker used by the WMAP team. Producing a single WMAP Q1-band sample requires 22 CPU-hrs, which is slightly more than the cost of a Planck 44 GHz sample of 17 CPU-hrs; this demonstrates that a full end-to-end Bayesian processing of the WMAP data is computationally feasible. In general, our recovered maps are very similar to the maps released by the WMAP team, although with two notable differences. In terms of temperature, we find a ∼2â μK quadrupole difference that most likely is caused by different gain modeling, while in polarization we find a distinct 2.5â μK signal that has been previously referred to as poorly measured modes by the WMAP team. In the COSMOGLOBE processing, this pattern arises from temperature-to-polarization leakage from the coupling between the CMB Solar dipole, transmission imbalance, and sidelobes. No traces of this pattern are found in either the frequency map or TOD residual map, suggesting that the current processing has succeeded in modeling these poorly measured modes within the assumed parametric model by using Planck information to break the sky-synchronous degeneracies inherent in the WMAP scanning strategy.