학술논문

The role of shear flow collapse and enhanced turbulence spreading in edge cooling approaching the density limit
Document Type
article
Source
Nuclear Fusion. 64(6)
Subject
Nuclear and Plasma Physics
Physical Sciences
tokamak
density limit
edge cooling
turbulence spreading
shear flow
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Fluids & Plasmas
Nuclear and plasma physics
Language
Abstract
Experimental studies of the dynamics of shear flow and turbulence spreading at the edge of tokamak plasmas are reported. Scans of line-averaged density and plasma current are carried out while approaching the Greenwald density limit on the J-TEXT tokamak. In all scans, when the Greenwald fraction f G = n ¯ / n G = n ¯ / ( I p / π a 2 ) increases, a common feature of enhanced turbulence spreading and edge cooling is found. The result suggests that turbulence spreading is a good indicator of edge cooling, indeed better than turbulent particle transport is. The normalized turbulence spreading power increases significantly when the normalized E × B shearing rate decreases. This indicates that turbulence spreading becomes prominent when the shearing rate is weaker than the turbulence scattering rate. The asymmetry between positive/negative (blobs/holes) spreading events, turbulence spreading power and shear flow are discussed. These results elucidate the important effects of interaction between shear flow and turbulence spreading on plasma edge cooling.