학술논문

Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma
Document Type
article
Source
Science Translational Medicine. 12(565)
Subject
Biomedical and Clinical Sciences
Oncology and Carcinogenesis
Immunology
Immunization
Vaccine Related
Genetics
Cancer
Rare Diseases
Animals
Antigen Presentation
Humans
Immunotherapy
Interferon-gamma
Intracellular Signaling Peptides and Proteins
Janus Kinase 1
Mice
NF-kappa B
Signal Transduction
Biological Sciences
Medical and Health Sciences
Medical biotechnology
Biomedical engineering
Language
Abstract
Defects in tumor-intrinsic interferon (IFN) signaling result in failure of immune checkpoint blockade (ICB) against cancer, but these tumors may still maintain sensitivity to T cell-based adoptive cell therapy (ACT). We generated models of IFN signaling defects in B16 murine melanoma observed in patients with acquired resistance to ICB. Tumors lacking Jak1 or Jak2 did not respond to ICB, whereas ACT was effective against Jak2 KO tumors, but not Jak1 KO tumors, where both type I and II tumor IFN signaling were defective. This was a direct result of low baseline class I major histocompatibility complex (MHC I) expression in B16 and the dependency of MHC I expression on either type I or type II IFN signaling. We used genetic and pharmacologic approaches to uncouple this dependency and restore MHC I expression. Through independent mechanisms, overexpression of NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) and intratumoral delivery of BO-112, a potent nanoplexed version of polyinosinic:polycytidylic acid (poly I:C), each restored the efficacy of ACT against B16-Jak1 KO tumors. BO-112 activated double-stranded RNA (dsRNA) sensing (via protein kinase R and Toll-like receptor 3) and induced MHC I expression via nuclear factor κB, independent of both IFN signaling and NLRC5. In summary, we demonstrated that in the absence of tumor IFN signaling, MHC I expression is essential and sufficient for the efficacy of ACT. For tumors lacking MHC I expression due to deficient IFN signaling, activation of dsRNA sensors by BO-112 affords an alternative approach to restore the efficacy of ACT.