학술논문

A pathogenic role for histone H3 copper reductase activity in a yeast model of Friedreich’s ataxia
Document Type
article
Source
Science Advances. 7(51)
Subject
Biochemistry and Cell Biology
Biological Sciences
Neurodegenerative
Genetics
Aetiology
2.1 Biological and endogenous factors
Language
Abstract
Disruptions to iron-sulfur (Fe-S) clusters, essential cofactors for a broad range of proteins, cause widespread cellular defects resulting in human disease. A source of damage to Fe-S clusters is cuprous (Cu1+) ions. Since histone H3 enzymatically produces Cu1+ for copper-dependent functions, we asked whether this activity could become detrimental to Fe-S clusters. Here, we report that histone H3–mediated Cu1+ toxicity is a major determinant of cellular functional pool of Fe-S clusters. Inadequate Fe-S cluster supply, due to diminished assembly as occurs in Friedreich’s ataxia or defective distribution, causes severe metabolic and growth defects in Saccharomyces cerevisiae. Decreasing Cu1+ abundance, through attenuation of histone cupric reductase activity or depletion of total cellular copper, restored Fe-S cluster–dependent metabolism and growth. Our findings reveal an interplay between chromatin and mitochondria in Fe-S cluster homeostasis and a potential pathogenic role for histone enzyme activity and Cu1+ in diseases with Fe-S cluster dysfunction.