학술논문

Signatures of Cholera Outbreak during the Yemeni Civil War, 2016-2019.
Document Type
article
Source
International journal of environmental research and public health. 19(1)
Subject
Humans
Cholera
Cities
Disease Outbreaks
World Health Organization
Epidemics
Kolmogorov–Zurbenko filter
Yemen
cholera
critical periods
outbreak signature
time series
Prevention
Good Health and Well Being
Kolmogorov-Zurbenko filter
Toxicology
Language
Abstract
The Global Task Force on Cholera Control (GTFCC) created a strategy for early outbreak detection, hotspot identification, and resource mobilization coordination in response to the Yemeni cholera epidemic. This strategy requires a systematic approach for defining and classifying outbreak signatures, or the profile of an epidemic curve and its features. We used publicly available data to quantify outbreak features of the ongoing cholera epidemic in Yemen and clustered governorates using an adaptive time series methodology. We characterized outbreak signatures and identified clusters using a weekly time series of cholera rates in 20 Yemeni governorates and nationally from 4 September 2016 through 29 December 2019 as reported by the World Health Organization (WHO). We quantified critical points and periods using Kolmogorov-Zurbenko adaptive filter methodology. We assigned governorates into six clusters sharing similar outbreak signatures, according to similarities in critical points, critical periods, and the magnitude of peak rates. We identified four national outbreak waves beginning on 12 September 2016, 6 March 2017, 28 May 2018, and 28 January 2019. Among six identified clusters, we classified a core regional hotspot in Sana'a, Sana'a City, and Al-Hudaydah-the expected origin of the national outbreak. The five additional clusters differed in Wave 2 and Wave 3 peak frequency, timing, magnitude, and geographic location. As of 29 December 2019, no governorates had returned to pre-Wave 1 levels. The detected similarity in outbreak signatures suggests potentially shared environmental and human-made drivers of infection; the heterogeneity in outbreak signatures implies the potential traveling waves outwards from the core regional hotspot that could be governed by factors that deserve further investigation.