학술논문

High-Specific-Activity-131I-MIBG versus 177Lu-DOTATATE Targeted Radionuclide Therapy for Metastatic Pheochromocytoma and Paraganglioma
Document Type
article
Source
Clinical Cancer Research. 27(11)
Subject
Cancer
Rare Diseases
Good Health and Well Being
3-Iodobenzylguanidine
Adrenal Gland Neoplasms
Humans
Iodine Radioisotopes
Lutetium
Octreotide
Organometallic Compounds
Paraganglioma
Pheochromocytoma
Positron Emission Tomography Computed Tomography
Radioisotopes
Radiopharmaceuticals
Radiotherapy
Oncology and Carcinogenesis
Oncology & Carcinogenesis
Language
Abstract
Targeted radionuclide therapies (TRT) using 131I-metaiodobenzylguanidine (131I-MIBG) and peptide receptor radionuclide therapy (177Lu or 90Y) represent several of the therapeutic options in the management of metastatic/inoperable pheochromocytoma/paraganglioma. Recently, high-specific-activity-131I-MIBG therapy was approved by the FDA and both 177Lu-DOTATATE and 131I-MIBG therapy were recommended by the National Comprehensive Cancer Network guidelines for the treatment of metastatic pheochromocytoma/paraganglioma. However, a clinical dilemma often arises in the selection of TRT, especially when a patient can be treated with either type of therapy based on eligibility by MIBG and somatostatin receptor imaging. To address this problem, we assembled a group of international experts, including oncologists, endocrinologists, and nuclear medicine physicians, with substantial experience in treating neuroendocrine tumors with TRTs to develop consensus and provide expert recommendations and perspectives on how to select between these two therapeutic options for metastatic/inoperable pheochromocytoma/paraganglioma. This article aims to summarize the survival outcomes of the available TRTs; discuss personalized treatment strategies based on functional imaging scans; address practical issues, including regulatory approvals; and compare toxicities and risk factors across treatments. Furthermore, it discusses the emerging TRTs.