학술논문

The V-type ATPase enhances photosynthesis in marine phytoplankton and further links phagocytosis to symbiogenesis
Document Type
article
Source
Current Biology. 33(12)
Subject
Life Below Water
Phytoplankton
Vacuolar Proton-Translocating ATPases
Diatoms
Photosynthesis
Dinoflagellida
Phagocytosis
Carbon
Carbon Dioxide
CCM
V-type H(+)-ATPase
biological pump
carbon-concentrating mechanism
diatoms
endosymbiosis
photosymbiosis
primary production
secondary endosymbiotic phytoplankton
Biological Sciences
Medical and Health Sciences
Psychology and Cognitive Sciences
Developmental Biology
Language
Abstract
Diatoms, dinoflagellates, and coccolithophores are dominant groups of marine eukaryotic phytoplankton that are collectively responsible for the majority of primary production in the ocean.1 These phytoplankton contain additional intracellular membranes around their chloroplasts, which are derived from ancestral engulfment of red microalgae by unicellular heterotrophic eukaryotes that led to secondary and tertiary endosymbiosis.2 However, the selectable evolutionary advantage of these membranes and the physiological significance for extant phytoplankton remain poorly understood. Since intracellular digestive vacuoles are ubiquitously acidified by V-type H+-ATPase (VHA),3 proton pumps were proposed to acidify the microenvironment around secondary chloroplasts to promote the dehydration of dissolved inorganic carbon (DIC) into CO2, thus enhancing photosynthesis.4,5 We report that VHA is localized around the chloroplasts of centric diatoms and that VHA significantly contributes to their photosynthesis across a wide range of oceanic irradiances. Similar results in a pennate diatom, dinoflagellate, and coccolithophore, but not green or red microalgae, imply the co-option of phagocytic VHA activity into a carbon-concentrating mechanism (CCM) is common to secondary endosymbiotic phytoplankton. Furthermore, analogous mechanisms in extant photosymbiotic marine invertebrates6,7,8 provide functional evidence for an adaptive advantage throughout the transition from endosymbiosis to symbiogenesis. Based on the contribution of diatoms to ocean biogeochemical cycles, VHA-mediated enhancement of photosynthesis contributes at least 3.5 Gtons of fixed carbon per year (or 7% of primary production in the ocean), providing an example of a symbiosis-derived evolutionary innovation with global environmental implications.