학술논문

X-Ray Performance of Critical-angle Transmission Grating Prototypes for the Arcus Mission
Document Type
article
Source
The Astrophysical Journal: an international review of astronomy and astronomical physics. 934(2)
Subject
Space Sciences
Particle and High Energy Physics
Astronomical Sciences
Physical Sciences
Ferrari
Lamborghini
Astronomical and Space Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Physical Chemistry (incl. Structural)
Astronomy & Astrophysics
Astronomical sciences
Particle and high energy physics
Space sciences
Language
Abstract
Arcus is a proposed Explorer Class soft X-ray grating spectrometer. It aims to explore cosmic feedback by mapping hot gases within and between galaxies and galaxy clusters and characterizing jets and winds from supermassive black holes and to investigate the dynamics of protoplanetary disks and stellar accretion. Arcus features 12 m focal-length grazing-incidence silicon pore optics (SPO) developed for the Athena mission. Critical-angle transmission (CAT) gratings efficiently disperse high diffraction orders onto CCDs. We report new and improved X-ray performance results for Arcus-like CAT gratings, including a record resolving power for two coaligned CAT gratings. Multiple Arcus prototype grating facets were illuminated by an SPO at the PANTER facility. The facets consist of 32 × 32.5 mm2 patterned silicon membranes, bonded to metal frames. The bonding angle is adjusted according to the measured average tilt angle of the grating bars in the membrane. Two simultaneously illuminated facets show a minor broadening of the Al-Kα doublet in the 18th and 21st orders with the best-fit record effective resolving power of R G ≈ 1.3 − 0.5 + ∞ × 10 4 (3σ), about three to four times the Arcus requirement. We measured the diffraction efficiency of quasi-fully illuminated gratings at O-K wavelengths in orders 4-7 in an Arcus-like configuration and compare results with synchrotron spot measurements. After corrections for geometrical effects and bremsstrahlung continuum, we find agreement between full and spot illumination at the two different facilities, as well as with the models used for Arcus effective area predictions. We find that these flight-like gratings meet the diffraction efficiency and greatly exceed the resolving power Arcus requires.