학술논문

Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF
Document Type
article
Source
The Astrophysical Journal Supplement Series. 238(2)
Subject
Space Sciences
Physical Sciences
Rare Diseases
accretion
accretion disks
black hole physics
galaxies: nuclei
surveys
ultraviolet: general
accretion
accretion disks
astro-ph.HE
Astronomical and Space Sciences
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Physical Chemistry (incl. Structural)
Astronomy & Astrophysics
Astronomical sciences
Language
Abstract
We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg2), g + R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>60% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.7 - 1.3 + 2.9 × 10 - 4 gal - 1 yr - 1 (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.