학술논문

Approximate Exponential Integrators for Time-Dependent Equation-of-Motion Coupled Cluster Theory.
Document Type
article
Source
Journal of Chemical Theory and Computation. 19(24)
Subject
Language
Abstract
With a growing demand for time-domain simulations of correlated many-body systems, the development of efficient and stable integration schemes for the time-dependent Schrödinger equation is of keen interest in modern electronic structure theory. In this work, we present two approaches for the formation of the quantum propagator for time-dependent equation-of-motion coupled cluster theory based on the Chebyshev and Arnoldi expansions of the complex, nonhermitian matrix exponential, respectively. The proposed algorithms are compared with the short-iterative Lanczos method of Cooper et al. [J. Phys. Chem. A 2021 125, 5438-5447], the fourth-order Runge-Kutta method, and exact dynamics for a set of small but challenging test problems. For each of the cases studied, both of the proposed integration schemes demonstrate superior accuracy and efficiency relative to the reference simulations.