학술논문

Phase measurement of light absorption and scatter in human tissue
Document Type
article
Source
Review of Scientific Instruments. 69(10)
Subject
Applied Physics
Engineering
Physical Sciences
Chemical Sciences
Language
Abstract
Analog and digital technologies are presented for precise measurement of propagation delay of photons from source and detector placed on portions of the human body. The goal of the apparatus design is to quantify absorption (μa) and scattering (μs′) induced by biological pigments and biological structures, respectively. Body tissues are highly scattering with a mean distance between scatterers of less than a mm (at 700-850 nm). Significant absorption is mainly due to 5%-10% of the tissue volume occupied by blood. Measurement of μa and μs′ is done by both time and frequency domain equipment. This article focuses upon frequency domain equipment because of its simplicity, reduced noise bandwidth, versatility, and the strong analogy to very high frequency/ultrahigh frequency communication devices, particularly those using phase modulation. Comparisons are made of homodyne and heterodyne systems together with evaluation of single and multiple side band systems, with particular emphasis on methods for multiplexed optical and radio frequencies by frequency encoding or time-sharing technologies. The applications of these phase modulation systems to quantitative brain and muscle blood oximetry, functional activity of the forebrain, and other important problems of medical science, are presented. © 1998 American Institute of Physics.