학술논문

Fungal Endophytes of Populus trichocarpa Alter Host Phenotype, Gene Expression, and Rhizobiome Composition.
Document Type
article
Source
Molecular plant-microbe interactions : MPMI. 32(7)
Subject
Fungi
Populus
Plant Roots
Biodiversity
Gene Expression Regulation
Plant
Phenotype
Rhizosphere
Endophytes
Gene Expression Regulation
Plant
Plant Biology & Botany
Genetics
Microbiology
Plant Biology
Language
Abstract
Mortierella and Ilyonectria genera include common species of soil fungi that are frequently detected as root endophytes in many plants, including Populus spp. However, the ecological roles of these and other endophytic fungi with respect to plant growth and function are still not well understood. The functional ecology of two key taxa from the P. trichocarpa rhizobiome, M. elongata PMI93 and I. europaea PMI82, was studied by coupling forest soil bioassays with environmental metatranscriptomics. Using soil bioassay experiments amended with fungal inoculants, M. elongata was observed to promote the growth of P. trichocarpa. This response was cultivar independent. In contrast, I. europaea had no visible effect on P. trichocarpa growth. Metatranscriptomic studies revealed that these fungi impacted rhizophytic and endophytic activities in P. trichocarpa and induced shifts in soil and root microbial communities. Differential expression of core genes in P. trichocarpa roots was observed in response to both fungal species. Expression of P. trichocarpa genes for lipid signaling and nutrient uptake were upregulated, and expression of genes associated with gibberellin signaling were altered in plants inoculated with M. elongata, but not I. europaea. Upregulation of genes for growth promotion, downregulation of genes for several leucine-rich repeat receptor kinases, and alteration of expression of genes associated with plant defense responses (e.g., jasmonic acid, salicylic acid, and ethylene signal pathways) also suggest that M. elongata manipulates plant defenses while promoting plant growth.