학술논문

Reservoir scale reactive-transport modeling of a buoyancy-controlled CO2 plume with impurities (SO2, NO2, O2)
Document Type
article
Source
Subject
Carbon
Sequestration
Simulation
Aquifer
Geologic storage
Co-injectants
Injection
Carbon dioxide
Sulfur dioxide
Nitrogen dioxide
Oxygen
NOx
SOx
Chemistry
Water quality
Energy
Earth Sciences
Environmental Sciences
Engineering
Language
Abstract
A demonstration project for the geological storage of CO2 is currently being considered in the deep Precipice Sandstone formation of the Surat Basin, Queensland, Australia. Because of the presence of potential fresh water resources in this formation, a reservoir-scale two-dimensional reactive-transport model was developed to assess temporal and spatial changes in water quality imposed by co-injecting CO2 with SO2, NO2, and O2 at this location. The model shows that because the injection rate is relatively low (60,000 tons/year), flow is buoyancy-dominated and under these conditions the predicted CO2 flow pattern is quite sensitive to fine-scale heterogeneities and the resolution of the numerical mesh. The model also shows that SO2 and NO2 readily partition into the aqueous phase in close vicinity of their injection point, lowering pH somewhat beyond the acidification from CO2 dissolution. Only O2 under redox disequilibrium conditions is modeled to persist in the CO2 plume away from the injection point, however at sub-ppm levels. This modeling effort demonstrates acidification near the wellbore due to the preferential stripping of gas impurities, and accumulation of CO2 around a lithostratigraphic boundary above the target formation, where relatively rapid mineral dissolution (muscovite, chlorite and calcite) and precipitation (ankerite, kaolinite and chalcedony) occur.