학술논문

Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3‑Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity
Document Type
article
Source
Journal of Medicinal Chemistry. 62(11)
Subject
Cancer
Breast Cancer
5.1 Pharmaceuticals
Development of treatments and therapeutic interventions
Adenosine
Amino Acid Motifs
Benzofurans
Biocatalysis
Cell Line
Tumor
Chemistry Techniques
Synthetic
Drug Design
Humans
Inhibitory Concentration 50
Models
Molecular
Poly(ADP-ribose) Polymerase Inhibitors
Poly(ADP-ribose) Polymerases
Structure-Activity Relationship
Medicinal and Biomolecular Chemistry
Organic Chemistry
Pharmacology and Pharmaceutical Sciences
Medicinal & Biomolecular Chemistry
Language
Abstract
Poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors are a class of anticancer drugs that block the catalytic activity of PARP proteins. Optimization of our lead compound 1 (( Z)-2-benzylidene-3-oxo-2,3-dihydrobenzofuran-7-carboxamide; PARP-1 IC50 = 434 nM) led to a tetrazolyl analogue (51, IC50 = 35 nM) with improved inhibition. Isosteric replacement of the tetrazole ring with a carboxyl group (60, IC50 = 68 nM) gave a promising new lead, which was subsequently optimized to obtain analogues with potent PARP-1 IC50 values (4-197 nM). PARP enzyme profiling revealed that the majority of compounds are selective toward PARP-2 with IC50 values comparable to clinical inhibitors. X-ray crystal structures of the key inhibitors bound to PARP-1 illustrated the mode of interaction with analogue appendages extending toward the PARP-1 adenosine-binding pocket. Compound 81, an isoform-selective PARP-1/-2 (IC50 = 30 nM/2 nM) inhibitor, demonstrated selective cytotoxic effect toward breast cancer gene 1 ( BRCA1)-deficient cells compared to isogenic BRCA1-proficient cells.