학술논문

Imaging joint infections using D-methyl-11C-methionine PET/MRI: initial experience in humans
Document Type
article
Source
European Journal of Nuclear Medicine and Molecular Imaging. 49(11)
Subject
Biomedical and Clinical Sciences
Clinical Sciences
Biomedical Imaging
Bioengineering
Clinical Research
Infectious Diseases
Infection
Humans
Magnetic Resonance Imaging
Methionine
Positron-Emission Tomography
Radiometry
Tissue Distribution
D-C-11-Met
Prosthetic joint infection
Nuclear medicine
Positron emission tomography
Magnetic resonance imaging
D-11C-Met
Other Physical Sciences
Nuclear Medicine & Medical Imaging
Clinical sciences
Language
Abstract
PurposeNon-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections.Methods614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling.ResultsD-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P