학술논문

Theory-Informed Design of a Tailored Strategy for Implementing Household TB Contact Investigation in Uganda
Document Type
article
Source
Subject
Health Services and Systems
Health Sciences
Behavioral and Social Science
HIV/AIDS
Infectious Diseases
Prevention
Clinical Trials and Supportive Activities
Rare Diseases
Tuberculosis
Clinical Research
Infection
Good Health and Well Being
COVID-19
Contact Tracing
Family Characteristics
Humans
Uganda
implementation strategies
implementation science
intervention design
tuberculosis
low-and-middle-income countries
implementation mapping
contact investigation
Public Health and Health Services
Health services and systems
Public health
Language
Abstract
Since 2012, the World Health Organization has recommended household contact investigation as an evidence-based intervention to find and treat individuals with active tuberculosis (TB), the most common infectious cause of death worldwide after COVID-19. Unfortunately, uptake of this recommendation has been suboptimal in low- and middle-income countries, where the majority of affected individuals reside, and little is known about how to effectively deliver this service. Therefore, we undertook a systematic process to design a novel, theory-informed implementation strategy to promote uptake of contact investigation in Uganda, using the COM-B (Capability-Opportunity-Motivation-Behavior) model and the Behavior Change Wheel (BCW) framework. We systematically engaged national, clinic-, and community-based stakeholders and collectively re-examined the results of our own formative, parallel mixed-methods studies. We identified three core behaviors within contact investigation that we wished to change, and multiple antecedents (i.e., barriers and facilitators) of those behaviors. The BCW framework helped identify multiple intervention functions targeted to these antecedents, as well as several policies that could potentially enhance the effectiveness of those interventions. Finally, we identified multiple behavior change techniques and policies that we incorporated into a multi-component implementation strategy, which we compared to usual care in a household cluster-randomized trial. We introduced some components in both arms, including those designed to facilitate initial uptake of contact investigation, with improvement relative to historical controls. Other components that we introduced to facilitate completion of TB evaluation-home-based TB-HIV evaluation and follow-up text messaging-returned negative results due to implementation failures. In summary, the Behavior Change Wheel framework provided a feasible and transparent approach to designing a theory-informed implementation strategy. Future studies should explore the use of experimental methods such as micro-randomized trials to identify the most active components of implementation strategies, as well as more creative and entrepreneurial methods such as human-centered design to better adapt the forms and fit of implementation strategies to end users.