학술논문

Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response
Document Type
article
Source
Subject
Biochemistry and Cell Biology
Biological Sciences
Biotechnology
Cancer
Genetics
5.1 Pharmaceuticals
Development of treatments and therapeutic interventions
Crystallography
X-Ray
DNA Damage
DNA Repair
Drug Discovery
Pharmaceutical Preparations
Fragment-based drug discovery
Structure-based drug discovery
X-ray crystallography
Cancer therapeutics
DNA damage Response
DNA repair
MRE11
APE1
FEN1
Biophysics
Biochemistry and cell biology
Language
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).