학술논문

Non-centrosomal microtubules at kinetochores promote rapid chromosome biorientation during mitosis in human cells
Document Type
article
Source
Current Biology. 32(5)
Subject
Bioengineering
Genetics
Chromosome Segregation
Humans
Kinetochores
Microtubules
Mitosis
Spindle Apparatus
agent-based simulation
chromosome segregation
computational model
kinetochore
mitosis
spindle assembly
Biological Sciences
Medical and Health Sciences
Psychology and Cognitive Sciences
Developmental Biology
Language
Abstract
Proper segregation of chromosomes during mitosis depends on "amphitelic attachments"-load-bearing connections of sister kinetochores to the opposite spindle poles via bundles of microtubules, termed as the "K-fibers." Current models of spindle assembly assume that K-fibers arise largely from stochastic capture of microtubules, which occurs at random times and locations and independently at sister kinetochores. We test this assumption by following the movements of all kinetochores in human cells and determine that most amphitelic attachments form synchronously at a specific stage of spindle assembly and within a spatially distinct domain. This biorientation domain is enriched in bundles of antiparallel microtubules, and perturbation of microtubule bundling changes the temporal and spatial dynamics of amphitelic attachment formation. Structural analyses indicate that interactions of kinetochores with microtubule bundles are mediated by non-centrosomal short microtubules that emanate from most kinetochores during early prometaphase. Computational analyses suggest that momentous molecular motor-driven interactions with antiparallel bundles rapidly convert these short microtubules into nascent K-fibers. Thus, load-bearing connections to the opposite spindle poles form simultaneously on sister kinetochores. In contrast to the uncoordinated sequential attachments of sister kinetochores expected in stochastic models of spindle assembly, our model envisions the formation of amphitelic attachments as a deterministic process in which the chromosomes connect with the spindle poles synchronously at a specific stage of spindle assembly and at a defined location determined by the spindle architecture. Experimental analyses of changes in the kinetochore behavior in cells with perturbed activity of molecular motors CenpE and dynein confirm the predictive power of the model.