학술논문

Multiple wheat genomes reveal global variation in modern breeding
Document Type
article
Author
Walkowiak, SeanGao, LiangliangMonat, CecileHaberer, GeorgKassa, Mulualem TBrinton, JemimaRamirez-Gonzalez, Ricardo HKolodziej, Markus CDelorean, EmilyThambugala, DinushikaKlymiuk, ValentynaByrns, BrookGundlach, HeidrunBandi, VenkatSiri, Jorge NunezNilsen, KirbyAquino, CatharineHimmelbach, AxelCopetti, DarioBan, TomohiroVenturini, LucaBevan, MichaelClavijo, BernardoKoo, Dal-HoeEns, JenniferWiebe, KrystaleeN’Diaye, AmidouFritz, Allen KGutwin, CarlFiebig, AnneFosker, ChristineFu, Bin XiaoAccinelli, Gonzalo GarciaGardner, Keith AFradgley, NickGutierrez-Gonzalez, JuanHalstead-Nussloch, GwynethHatakeyama, MasaomiKoh, Chu ShinDeek, JaslineCostamagna, Alejandro CFobert, PierreHeavens, DarrenKanamori, HiroyukiKawaura, KanakoKobayashi, FuminoriKrasileva, KseniaKuo, TonyMcKenzie, NeilMurata, KazukiNabeka, YusukePaape, TimothyPadmarasu, SudharsanPercival-Alwyn, LawrenceKagale, SateeshScholz, UweSese, JunJuliana, PhilominSingh, RaviShimizu-Inatsugi, RieSwarbreck, DavidCockram, JamesBudak, HikmetTameshige, ToshiakiTanaka, TsuyoshiTsuji, HiroyukiWright, JonathanWu, JianzhongSteuernagel, BurkhardSmall, IanCloutier, SylvieKeeble-Gagnère, GabrielMuehlbauer, GaryTibbets, JosquinNasuda, ShuheiMelonek, JoannaHucl, Pierre JSharpe, Andrew GClark, MatthewLegg, ErikBharti, ArvindLangridge, PeterHall, AnthonyUauy, CristobalMascher, MartinKrattinger, Simon GHanda, HirokazuShimizu, Kentaro KDistelfeld, AssafChalmers, KenKeller, BeatMayer, Klaus FXPoland, JesseStein, NilsMcCartney, Curt ASpannagl, ManuelWicker, ThomasPozniak, Curtis J
Source
Nature. 588(7837)
Subject
Genetics
Biotechnology
Human Genome
Acclimatization
Animals
Centromere
Chromosome Mapping
Cloning
Molecular
DNA Copy Number Variations
DNA Transposable Elements
Edible Grain
Genes
Plant
Genetic Introgression
Genetic Variation
Genome
Plant
Genomics
Haplotypes
Insecta
Internationality
NLR Proteins
Plant Breeding
Plant Diseases
Plant Proteins
Polymorphism
Single Nucleotide
Polyploidy
Triticum
General Science & Technology
Language
Abstract
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.