학술논문

Three-Dimensional Pressure Profile of the Lower Esophageal Sphincter and Crural Diaphragm in Patients with Achalasia Esophagus
Document Type
article
Source
Gastroenterology. 159(3)
Subject
Biomedical and Clinical Sciences
Clinical Sciences
Digestive Diseases
Clinical Research
Aged
Case-Control Studies
Diaphragm
Esophageal Achalasia
Esophageal Sphincter
Lower
Female
Healthy Volunteers
Humans
Inhalation
Male
Manometry
Middle Aged
Muscle Contraction
Pressure
Prospective Studies
Tomography
X-Ray Computed
Diagnostic
Dysmotility
Esophageal Contraction
Esophageal Disorder
Neurosciences
Paediatrics and Reproductive Medicine
Gastroenterology & Hepatology
Clinical sciences
Nutrition and dietetics
Language
Abstract
Background & aimsSmooth muscles of the lower esophageal sphincter (LES) and skeletal muscle of the crural diaphragm (esophagus hiatus) provide the sphincter mechanisms at the esophagogastric junction (EGJ). We investigated differences in the 3-dimensional (3D) pressure profile of the LES and hiatal contraction between healthy subjects and patients with achalasia esophagus.MethodsWe performed a prospective study of 10 healthy subjects (controls; 7 male; mean age, 60 ± 15 years; mean body mass index, 25 ± 2) and 12 patients with a diagnosis of achalasia (7 male; mean age, 63 ± 13 years; mean body mass index, 26 ± 1), enrolled at a gastroenterology clinic. Participants underwent 3D high-resolution manometry (3DHRM) with a catheter equipped with 96 transducers (for the EGJ pressure recording). A 0.5-mm metal ball was taped close to the transducer number 1 of the 3DHRM catheter. EGJ pressure was recorded at end-expiration (LES pressure) and at the peak of forced inspiration (hiatal contraction). Computed tomography (CT) scans were performed to localize the circumferential location of the metal ball on the catheter. Esophagus, LES, stomach, right and left crus of the diaphragm, and spine were segmented in each CT scan slice images to construct the 3D morphology of the region.ResultsThe metal ball was located at the 7 o'clock position in all controls. The circumferential orientation of metal ball was displaced 45 to 90 degrees in patients with achalasia compared with controls. The 3D-pressure profile of the EGJ at end-expiration and forced inspiration revealed marked differences between the groups. The LES turns to the left as it entered from the chest into the abdomen, forming an angle between the spine and LES. The spine-LES angle was smaller in patients with achalasia (104°) compared with controls (124°). Five of the 10 subjects with achalasia had physical breaks in the left crus of the diaphragm CONCLUSIONS: Besides LES, the 3D pressure profile of the EGJ can indicate anatomic and functional abnormalities of the crural diaphragm muscle in patients with achalasia esophagus. Further studies are needed to define the nature of hiatal and crural diaphragm dysfunction in patients with achalasia of the esophagus.