학술논문

A Distributed Network for Intensive Longitudinal Monitoring in Metastatic Triple-Negative Breast Cancer.
Document Type
article
Source
Journal of the National Comprehensive Cancer Network. 14(1)
Subject
Biomedical and Clinical Sciences
Oncology and Carcinogenesis
Biotechnology
Cancer
Clinical Research
Clinical Trials and Supportive Activities
Breast Cancer
Good Health and Well Being
Antineoplastic Combined Chemotherapy Protocols
Bone Neoplasms
Community Networks
Drug Resistance
Neoplasm
Drug Screening Assays
Antitumor
Expert Testimony
Female
Follow-Up Studies
Humans
Leukapheresis
Longitudinal Studies
Middle Aged
Neoplasm Metastasis
Neoplastic Cells
Circulating
Research Personnel
Triple Negative Breast Neoplasms
Oncology & Carcinogenesis
Oncology and carcinogenesis
Health services and systems
Language
Abstract
Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs.