학술논문

Quantum spin Hall state in monolayer 1T'-WTe 2
Document Type
article
Source
Nature Physics. 13(7)
Subject
cond-mat.mtrl-sci
cond-mat.mes-hall
Fluids & Plasmas
Mathematical Sciences
Physical Sciences
Language
Abstract
A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of a magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling. By investigating the electronic structure of epitaxially grown monolayer 1T'-WTe 2 using angle-resolved photoemission (ARPES) and first-principles calculations, we observe clear signatures of topological band inversion and bandgap opening, which are the hallmarks of a QSH state. Scanning tunnelling microscopy measurements further confirm the correct crystal structure and the existence of a bulk bandgap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T'-WTe 2 as a new class of QSH insulator with large bandgap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs).