학술논문

The mole genome reveals regulatory rearrangements associated with adaptive intersexuality
Document Type
article
Source
Science. 370(6513)
Subject
Biological Sciences
Bioinformatics and Computational Biology
Genetics
Biotechnology
Human Genome
Adaptation
Physiological
Animals
Chromosome Inversion
Datasets as Topic
Female
Fibroblast Growth Factor 9
Gene Expression Regulation
Genome
Mice
Mice
Transgenic
Moles
Regulatory Elements
Transcriptional
Sex Differentiation
Steroid 17-alpha-Hydroxylase
Tandem Repeat Sequences
Testosterone
General Science & Technology
Language
Abstract
Linking genomic variation to phenotypical traits remains a major challenge in evolutionary genetics. In this study, we use phylogenomic strategies to investigate a distinctive trait among mammals: the development of masculinizing ovotestes in female moles. By combining a chromosome-scale genome assembly of the Iberian mole, Talpa occidentalis, with transcriptomic, epigenetic, and chromatin interaction datasets, we identify rearrangements altering the regulatory landscape of genes with distinct gonadal expression patterns. These include a tandem triplication involving CYP17A1, a gene controlling androgen synthesis, and an intrachromosomal inversion involving the pro-testicular growth factor gene FGF9, which is heterochronically expressed in mole ovotestes. Transgenic mice with a knock-in mole CYP17A1 enhancer or overexpressing FGF9 showed phenotypes recapitulating mole sexual features. Our results highlight how integrative genomic approaches can reveal the phenotypic impact of noncoding sequence changes.