학술논문

The accuracy of helium ion CT based particle therapy range prediction: an experimental study comparing different particle and x-ray CT modalities
Document Type
article
Source
Physics in Medicine and Biology. 66(23)
Subject
Bioengineering
Animals
Helium
Phantoms
Imaging
Plastics
Protons
Swine
Tomography
X-Ray Computed
X-Rays
particle CT
helium ions
particle therapy
dual-energy CT
tissue
proton ct
range accuracy
Other Physical Sciences
Biomedical Engineering
Clinical Sciences
Nuclear Medicine & Medical Imaging
Language
Abstract
This work provides a quantitative assessment of helium ion CT (HeCT) for particle therapy treatment planning. For the first time, HeCT based range prediction accuracy in a heterogeneous tissue phantom is presented and compared to single-energy x-ray CT (SECT), dual-energy x-ray CT (DECT) and proton CT (pCT). HeCT and pCT scans were acquired using the US pCT collaboration prototype particle CT scanner at the Heidelberg Ion-Beam Therapy Center. SECT and DECT scans were done with a Siemens Somatom Definition Flash and converted to RSP. A Catphan CTP404 module was used to study the RSP accuracy of HeCT. A custom phantom of 20 cm diameter containing several tissue equivalent plastic cubes was used to assess the spatial resolution of HeCT and compare it to DECT. A clinically realistic heterogeneous tissue phantom was constructed using cranial slices from a pig head placed inside a cylindrical phantom (ø150 mm). A proton beam (84.67 mm range) depth-dose measurement was acquired using a stack of GafchromicTM EBT-XD films in a central dosimetry insert in the phantom. CT scans of the phantom were acquired with each modality, and proton depth-dose estimates were simulated based on the reconstructions. The RSP accuracy of HeCT for the plastic phantom was found to be 0.3 ± 0.1%. The spatial resolution for HeCT of the cube phantom was 5.9 ± 0.4 lp cm-1for central, and 7.6 ± 0.8 lp cm-1for peripheral cubes, comparable to DECT spatial resolution (7.7 ± 0.3 lp cm-1and 7.4 ± 0.2 lp cm-1, respectively). For the pig head, HeCT, SECT, DECT and pCT predicted range accuracy was 0.25%, -1.40%, -0.45% and 0.39%, respectively. In this study, HeCT acquired with a prototype system showed potential for particle therapy treatment planning, offering RSP accuracy, spatial resolution, and range prediction accuracy comparable to that achieved with a commercial DECT scanner. Still, technical improvements of HeCT are needed to enable clinical implementation.