학술논문

Microglial INPP5D limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimers disease.
Document Type
article
Source
Alzheimers and Dementia. 19(6)
Subject
Alzheimers disease
Inpp5d
SHIP1
cystatin F
microglia
oligomer
spatial transcriptomics
Mice
Humans
Animals
Infant
Alzheimer Disease
Microglia
Mice
Transgenic
Plaque
Amyloid
Disease Models
Animal
Amyloid beta-Peptides
Phosphatidylinositol-3
4
5-Trisphosphate 5-Phosphatases
Language
Abstract
INTRODUCTION: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimers disease (LOAD). METHODS: To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS: At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION: These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS: Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimers disease gene networks.