학술논문

Comparison of νμ-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions
Document Type
article
Source
European Physical Journal C. 79(3)
Subject
Nuclear and Plasma Physics
Particle and High Energy Physics
Physical Sciences
hep-ex
physics.ins-det
Atomic
Molecular
Nuclear
Particle and Plasma Physics
Quantum Physics
Nuclear & Particles Physics
Astronomical sciences
Atomic
molecular and optical physics
Particle and high energy physics
Language
Abstract
We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800MeV, using an exposure corresponding to 5.0 × 10 19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity.