학술논문

Down-regulation of FZD3 receptor suppresses growth and metastasis of human melanoma independently of canonical WNT signaling
Document Type
article
Source
Proceedings of the National Academy of Sciences of the United States of America. 116(10)
Subject
Genetics
Cancer
Neurosciences
2.1 Biological and endogenous factors
1.1 Normal biological development and functioning
Underpinning research
Aetiology
Cell Proliferation
Down-Regulation
Frizzled Receptors
Gene Expression Profiling
Humans
Melanoma
Neoplasm Invasiveness
Neoplasm Metastasis
Wnt Signaling Pathway
frizzled
melanoma
MAPK
systems biology
gene expression
Language
Abstract
Frizzled 3 receptor (FZD3) plays an important role in the homeostasis of the neural crest and its derivatives, which give rise to pigment-synthesizing cells, melanocytes. While the role for FZD3 in specification of the melanocytic lineage from neural crest is well established, its significance in the formation of melanoma, its associated malignancy, is less understood. In this study we identified FZD3 as a critical regulator of human melanoma tumorigenesis. Down-regulation of FZD3 abrogated growth, colony-forming potential, and invasive capacity of patient-derived melanoma cells. Xenotransplantation of tumor cells with down-regulated FZD3 levels originating from melanomas carrying the BRAF(V600) mutation uniformly suppressed their capacity for tumor and metastasis formation. FZD3 knockdown leads to the down-regulation of the core cell cycle protein components (cyclins D1, E2, B1, and CDKs 1, 2, and 4) in melanomas with a hyperactive BRAF oncogene, indicating a dominant role of this receptor during melanoma pathogenesis. Enriched pathway analysis revealed that FZD3 inhibits transcriptional networks controlled by CREB5, FOXD1, and ATF3, which suppress the activity of MAPK-mediated signaling. Thus, FZD3 establishes a positive-feedback mechanism that activates MAPK signal transduction network, critical to melanoma carcinogenesis. Importantly, high levels of FZD3 mRNA were found to be correlated with melanoma advancement to metastatic stages and limited patient survival. Changes in gene-expression patterns mediated by FZD3 activity occur in the absence of nuclear β-catenin function, thus representing an important therapeutic target for the melanoma patients whose disease progresses independent of canonical WNT signaling.